
JOURNAL OF COMPUTATIONAL PHYSICS 85, 302-322 (1989)

A General Concurrent Algorithm for
Plasma Particle-in-Cell Simulation Codes

PAULETT C. LIEWER

Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California 91109

AND

VIKTOR K. DECYK

Physics Department, University of California at Los Angeles,
Los Angeles, California 90024

Received June 23, 1988; revised December 14, 1988

We have developed a new algorithm for implementing plasma particle-in-cell (PIG) simula-
tion codes on concurrent processors with distributed memory. This algorithm, named the
general concurrent PIC algorithm (GCPIC), has been used to implement an electrostatic PIC
code on the 32-node JPL Mark III Hypercube parallel computer. To decompose a PIC code
using the GCPIC algorithm, the physical domain of the particle simulation is divided into
sub-domains, equal in number to the number of processors, such that all sub-domains have
roughly equal numbers of particles. For problems with non-uniform particle densities, these
sub-domains will be of unequal physical size. Each processor is assigned a sub-domain and is
responsible for updating the particles in its sub-domain. This algorithm has led to a very
efhcient parallel implementation of a well-benchmarked l-dimensional PIC code. The domi-
nant portion of the code, updating the particle positions and velocities, is nearly 100%
efficient when the number of particles is increased linearly with the number of hypercube
processors used so that the number of particles per processor is constant. For example, the
increase in time spent updating particles in going from a problem with 11,264 particles run
on 1 processor to 360,448 particles on 32 processors was only 3% (parallel efficiency of 97%).
Although implemented on a hypercube concurrent computer, this algorithm should also be
efficient for PIC codes on other parallel architectures and for large PIC codes on sequential
computers where part of the data must reside on external disks. c‘ 1989 Academic Press, Inc.

I. INTRODUCTION

VLSI technology has led to a dramatic decrease in the cost of computing power.
By using this technology, concurrent or parallel processors with performance com-
parable to today’s supercomputers can be built at a modest cost, thus potentially
making supercomputers widely available. In the near future, concurrent processors
with even greater performance will become available which, in principle, can be

302
0021-9991/89 $3.00
Copyright 0 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

GENERAL CONCURRENT PIG ALGORITHM 303

used to address problems now beyond the limits of existing supercomputers.
However, before the full potential of these machines can be realized, new algorithms
must be developed for implementing codes efficiently on concurrent processors.

In this paper, we present a new algorithm for implementing one class of codes,
plasma particle-in-cell (PIC) simulations [1,2], on concurrent processors. In
particle simulations of plasmas, the orbits of thousands to millions of individual
plasma electrons and ions are followed as an initial value problem, where the par-
ticles move in the electric and magnetic fields calculated self-consistently from the
charge and current densities created by these same particles. Particle simulations
are used to study a wide variety of nonlinear problems in many areas of plasma
physics research such as magnetic and inertial fusion, space and astrophysical
plasmas, electron and ion beam propagation, free electron lasers and particle
accelerators.

The general concurrent PIC (GCPIC) algorithm, introduced in this paper, is
designed to make the most computationally intensive portion of a PIC code, the
particle computations, run efficiently on a MIMD parallel processor with
distributed memory. (In a multiple-instruction multiple-data (MIMD) parallel
computer, each processor may execute a separate stream of instructions. This is in
contrast to a single-instruction multiple-data (SIMD) parallel computer in which
the same instruction is executed simultaneously in each processor.) To implement
a code using the GCPIC algorithm, the physical domain of the simulation is divided
into sub-domains, equal in number to the number of processors, such that all sub-
domains have roughly equal numbers of particles. For problems with non-uniform
particle densities, these sub-domains will be of unequal physical size. Each
processor is assigned a single sub-domain. The processor stores the particle and
electromagnetic field information for this sub-domain and performs the computations
for the particles in this sub-domain. Since each processor is responsible for
approximately the same number of particles, the processors’ loads are balanced for
the dominant portion of the code, the particle computations, even when the particle
spatial distribution is extremely non-uniform. Moreover, as the spatial distribution
of the particles evolves in time, the sub-domains can be re-created to ensure that
the processor loads remain balanced (dynamic load balancing). When a particle
moves from one sub-domain to another, it must be passed to the appropriate
processor.

The GCPIC algorithm for parallel decomposition has been used to implement a
widely benchmarked UCLA l-dimensional electrostatic PIC code [3,4] on the
32-node JPL Mark III Hypercube, a concurrent processor with distributed
memory. The resulting parallel Fortran code has proven to be quite efficient. For
a problem with a fixed total number of particles, the increase in speed in going from
1 to 32 processors for the dominant portion of code, the particle computation (push
time), was 29.5, or 92% efficiency for a fixed problem size. Here, the push time
includes the time to update the particle positions and velocities (including the inter-
polation to find the forces at the particle positions) and the time to deposit (inter-
polate) the particles’ contributions to the charge and/or current densities onto the

581/X5/2-4

304 LIEWER ANDDECYK

discrete grid. When the number of particles increased linearly with the number of
processors used, so that the number of particles per processor was constant, the
push algorithm was nearly 100% efficient. For example, the increase in time spent
updating particles in going from a problem with 11,264 particles run on 1 processor
to 720,896 particles on 64 processors was only 3%, or 97% efficiency for fixed
grain size. Note that these efficiencies were found for a l-dimensional PIC code.
High push efficiencies should also be attainable in 2-and 3-dimensional codes using
the GCPIC algorithm provided the fraction of particles moving between processors
at each time step remains small. For these runs, the particle density remained
relatively uniform in space and processor load imbalance did not become a
problem. Although implemented on a hypercube concurrent computer, this algo-
rithm should also be efficient for PIC codes on other parallel architectures with
distributed memory and on sequential computers where part of the data resides in
external memory.

The structure of this paper is as follows. In Section II, the GCPIC algorithm is
described. In Section III, its implementation in a 1D electrostatic code running on
the Mark III Hypercube is described and the portability of the code to other com-
puters is discussed. In Section IV, the Mark III Hypercube hardware is described
and the performance of the parallel code on the Mark III is analyzed. Timing
comparisons with other supercomputers are also presented. Section V contains the
conclusions.

II. GCPIC ALGORITHM

Plasma particle-in-cell (PIC) codes [1,2] calculate the orbits of lo4 - lo6 plasma
electrons and ions as an initial value problem, where the plasma particles are
moving in the electromagnetic fields determined from Maxwell’s equation (or a
subset) with the plasma charge and/or current density as the sources. In PIC codes,
the particles can be located anywhere in the spatial domain of the simulation, but
the electromagnetic field equations are solved on a discrete grid.

Each iteration, or time step, in a PIC code consists of two stages. In the first
stage, the particle push, all particle velocities and positions are advanced on time
step using the present values of the electromagnetic fields using a discretized version
of

(1)

Since the fields are defined only at grid points, an interpolation is used to find the
fields and forces at the actual positions of the particles. The new plasma-generated

GENERAL CONCURRENT PIc ALGORITHM 305

charge and current densities are calculated from the new velocities and positions of
the particles using a discretized version of

Pq(Xv t)= 1 q&x-Xi) (3)

j(x, t)= C q,v,S(x-x,).
i= I,n,,,

(4)

In the second stage of each time step, the electromagnetic fields at the new time
are calculated by solving Maxwell’s equations (or a subset) on the discrete grid
with the new charge and/or charge densities as the sources. Many different varieties
of PIC codes have been developed [l-3,5-7]. The electromagnetic fields may be
solved in Fourier space using fast Fourier transforms (FFT) or in configuration
space using finite-difference techniques. A PIC code can be explicit or partially
implicit [S] in time. The choice of methods is strongly problem dependent.

The general concurrent particle-in-cell (GCPIC) algorithm is a method for dividing
such plasma particle-in-cell simulation problems among the N, processors of a
concurrent processor with distributed memory. In a distributed memory concurrent
processor, each processor has its own local memory; there is no global or shared
memory. The key feature of the GCPIC algorithm is that two distinct spatial
decompositions of the physical domain are used to map the problem onto the
parallel processors. The two decompositions mirror the two stages of a PIC code:
a primary decomposition is used to divide the particles and particle computation
efficiently among the processors and a secondary decomposition is used to divide the
electromagnetic field computation among the processors. The primary decomposi-
tion is designed to make the dominant portion of a PIC code, the particle push, run
efficiently in parallel. For the primary decomposition, the physical domain of the
simulation is divided into N, sub-domains such that these sub-domains have
roughly equal numbers of particles. For problems with non-uniform particle
densities, these sub-domains will be of unequal physical size, and, in general, will
contain unequal numbers of grid points. Figure 1 shows such sub-domains for an
eight node concurrent processor for l- and 2-dimensional simulations for problems
with uniformly spaced grid points. In both examples, the eight sub-domains have
equal numbers of particles, but unequal numbers of grid points. Each processor is
assigned a sub-domain and is responsible for storing and pushing the particles in
this subdomain and, in addition, for storing the electromagnetic field arrays (charge
densities, electric fields, etc.) for the grid points of its assigned sub-domain. As a
particle moves to a new sub-domain, the particle is passed to the processor assigned
that sub-domain in this primary decomposition. The primary decomposition is also
used for most of the diagnostics.

The primary decomposition of the GCPIC algorithm, used to divide the particles
among the processors, was motivated by two main considerations. To implement
any code efficiently on a concurrent processor, one must (1) balance the computa-
tion (and memory) load uniformly among the processors and (2) minimize the

306 LIEWER AND DECYK

(b)

FIG. 1. Examples of primary sub-domains created for an S-node parallel processor using the GCPIC
algorithm for simulations with uniform grid spacing. Sub-domains have equal numbers of particles, but
unequal physical size. (a) 1D simulation and (b) 2D simulation.

time spent in communication between the processors. The time and memory
requirements of a PIC code are dominated by the particle computation. Therefore,
the processor loads are most evenly balanced when they have nearly equal numbers of
particles; the GCPIC algorithm accomplishes this by having the sub-domains in the
primary decomposition created with nearly equal numbers of particles. To minimize
inter-processor communication in a parallel PIC code, a processor should store the
portions of the electromagnetic field grid arrays used in the interpolations in the
particle computation for all of its assigned particles. Otherwise, the update of each
particle could require one communication to a distant processor to obtain the
forces and another to “deposit” the charge in the charge and current density array.
Therefore, in the GCPIC algorithm, each processor stores the electromagnetic field
arrays for the grid points in its physical sub-domain. Since these sub-domains may
contain unequal numbers of grid points, the grid arrays for different processors may
vary in size.

Dynamic load balancing can easily be incorporated into a code using the GCPIC
algorithm: If processor load imbalance occurs during a run as the plasma density
evolves, sub-domains of the primary decomposition can be re-created so that the
processors particle loads are again balanced.

A hypercube computer of dimension d is an ensemble of 2d independent
processors, each with its own local memory. There is no shared or global memory.
Communication is through channels which connect the processors in a hypercube
topology. To assign the sub-domains of the primary decomposition to the pro-
cessors in a hypercube, the hypercube is “configured” in the same spatial dimen-
sionality as the simulation grid, i.e., the d-dimensional cube is symbolically reduced
to a cube of the same dimension as the simulation by ignoring some of the hyper-

GENERAL CONCURRENT PIG ALGORITHM 307

(a) 2 6
3

0 CEfl 4

7

1 5

(b)
__--

___---------- -____
-_

/ b
2 3 7 6

~,/ __--- I--1 --_____ j
0 1 5 4

CC) __--
____. ------- ____ __

,,.+
-.

‘.
I

, \\

i 5 .
0 1 3 2 6 7 5 4

FIG. 2. Hypercube communications connections. Processors are located at large dots. (a) Com-
munication connections for an I-node (3-dimensional) hypercube. (b) An 8-node hypercube “con-
figured” in two dimensions. (c) An I-node hypercube “configured” in one dimension. In (b) and (c) the
unused communication channels are not shown; dotted lines are communication channels used for
periodic boundary conditions.

cube communication connections. This is illustrated in Fig. 2 where an g-node
(d= 3) hypercube is shown configured in 3-, 2-, and l-dimensions. It can be seen
that lower dimensionality configurations are obtained by “cutting” some of the
communication connections. In a hypercube, the processors are numbered so that
directly connected processors differ by only one bit in the binary representation of
the processor number, e.g., processor 7 (binary 111) is directly connected to
processors 3 (binary 011), 5 (binary lOl), and 6 (binary 110). Nearest neighbor
sub-domains are assigned to nearest neighbor processors as illustrated in Fig. 1 for
both the l- and 2-dimensional examples. Thus in one dimension, when a particle
moves to a neighboring sub-domain, it is passed to a processor directly connected.
In two dimensions, two passes will be required to pass particles which move to
diagonal neighbors, e.g., in Fig. lb, if a particle in sub-domain 7 moves to sub-
domain 1, it would be passed first to processor 3 or 5 and then to processor 1.

The primary domain decomposition of the GCPIC algorithm, optimized for the
concurrent particle computations, will not generally be the optimum decomposition
for solving the electromagnetic field equations in parallel. Therefore, in the GCPIC
algorithm, a secondary decomposition is used for the field solution. This secondary
domain decomposition is chosen to make the concurrent held solution efficient and
is used only for this and related diagnostics. The specific decomposition chosen will

308 LIEWERANDDECYK

be different depending on whether a fast Fourier transform (FFT) method, a finite
difference method, or a multi-grid method is used. In general, we anticipate that the
most efficient decomposition for the field solution will involve dividing the number
of grid cells equally among the processors. Note that if this decomposition were
also used for dividing the particles among processors, load imbalance could result
whenever the number of particles per cell was non-uniform.

At each time step, prior to solving the field equations, the relevant grid arrays
(charge, current densities) are passed among the processors and re-distributed as
needed in the secondary decomposition. After the field equations are solved, the
electromagnetic field arrays must be passed among the processors so that they are
distributed as needed in the primary sub-domain decomposition for the parallel
particle computation. These two redistrihutions of grid arrays between the primary
and secondary decomposition at each time step are inherent in the GCPIC algorithm
and are necessary to make both the particle and field portions of a PIC code efficient
on a parallel procesor. Under certain circumstances, the primary and secondary
decompositions will be the same and thus no redistributions are necessary. In this
case, parallel code development would be simplified. The two decompositions will
be the same, for example, if a finite difference method is used for the elec-
tromagnetic field solution and if an adaptive grid is used such that the number of
particles per grid cell is uniform.

Although implemented on a hypercube parallel computer, the GCPIC algorithm
should also be highly efficient on other parallel computers with distributed memory.
The two main issues which motivated the GCPIC algorithm, processor load
balance and minimum internode communication, remain the same for any parallel
computer with distributed memory regardless of the topology of the internode
connections.

The GCPIC algorithm should also be efficient for running large problems on
sequential machines where portions of the data to be processed must be stored in
external memory, e.g., on a solid state disk. In particular, the primary decomposi-
tion would be an efficient way of dividing up the particle and field data where now
the sub-domain size would be determined by the size of the internal memory of the
sequential computer. In this case, the individual sub-domains (including both
particles and fields) would be brought off disk and into memory one at a time.
Internode communication would be replaced by temporary storage used to pass
information from one data block to another.

III. IMPLEMENTATION OF GCPIC ON THE JPL MARK III HYPERCUBE

The GCPIC algorithm for parallel decomposition has been used to implement a
widely benchmarked UCLA l-dimensional electrostatic PIC code [3,4] on the
JPL Mark III Hypercube in Fortran. In this code, named BEPSl, spatial varia-
tion is allowed only in the x direction and magnetic fields and forces have been
neglected. Poisson’s equation is used to determine the electric field from the

GENERAL CONCURRENT PIG ALGORITHM 309

plasma charge density, Eq. (3). The velocity and position of each ion and electron
(i = 1, npart) is advanced in time using the simple leap frog algorithm

(5)

x;(t+At)=xi(t)+ui (6)

Here, Fi is the force due to the x electric field, F,(t) = q;E,(t), at the position of the
ith particle. The particle positions can be anywhere in the physical domain of the
problem, but to calculate the electric field, the physical domain is represented as a
discrete grid xg with uniform spacing Ax. The particle positions are interpolated
onto this grid to determine the charge density py (x,, t + At) at the grid points using
a quadrupole interpolation. The resulting electric field E(x,, t + At) is determined
by solving Poisson’s equation

dE(x, t) -=47rp,(x, t)
dx

in Fourier space using a fast Fourier transform (FFT). In BEPSl, this equation is
solved in Fourier space both for periodic and bounded systems; for bounded
plasmas, the necessary homogenous solution is added to the FFT solution [8]. The
force Fi(t) on the ith particle is found by a quadrupole interpolation from the
values of the electric field at the nearest grid points. In a sequential code, the time
to push the particles scales linearly with the number of particles, npart; the computa-
tion time to compute the field using the FFT scales as n,ln ng, where ng is the
number of grid points. Typically npart 9 ng, and the time to push the particles
dominates over the time to solve for the fields. In the benchmark case for this code,
there are 11,264 particles and 128 grid points. For this case, about 90 % of the cpu
time was spent on the particle push when run sequentially. Of the remaining time,
about 8 % was spent on diagnostics and 2 % on solving for the electric field.

A. Primary Decomposition

The GCPIC algorithm, without dynamic load balancing, has been used for the
parallel implementation of the UCLA 1D electrostatic code for a problem with an
initially uniform plasma density. A uniform grid spacing Ax is used in the code as
required for the FFT solution of Poisson’s equation. Because the particle density is
uniform, the 1D grid was divided into N, sub-domains of equal physical size for the
primary GCPIC decomposition for this problem. Since the grid spacing Ax is a
constant, these sub-domains also contain equal numbers of grid points. Each
processor is assigned one sub-domain and is responsible for computing the updates
for the particles in its sub-domain. If the total number of particles is npart and N,
processors are used, each processor initially has npp = npart/Np particles. However,

310 LIEWER AND DECYK

(b)

d 1 3 2 6 7 5
‘;.: “. 1 ..,.. ..,: ..(: ‘. : :

.’ :. _‘. :_. :. .‘.. :..

‘. .; ., ., ‘, ., ‘(.; ., ‘(‘. ;. . . ;.
,’ ,’ ; ,’

III III III /I I I,‘, III ,I,

:
X-+

FIG. 3. (a) GCPIC primary decomposition for an I-node machine showing nearest neighbor
processor assignments for the 1D hypercube PIC code with uniform density and uniform grid spacing.
(b) Secondary decomposition showing processor assignments for the Fourier transform portions of the
code. Because of the two decompositions used, grid data must be redistributed among the processors at
each iteration.

as the simulation evolves and particles move among processors, the number of
particles per processor npp will vary.

For this 1D PIC code, the hypercube was configured as a 1D array of processors
(cf. Fig. 2c), and the sub-domains were mapped directly onto the processor array,
e.g., in nearest neighbor order. The sub-domains and processor assignments for this
problem on an 8-node hypercube are shown in Fig. 3a. When a particle passes to
a neighboring sub-domain, it is passed from its processor to a directly connected
processor and thus all the communication needed for moving particles between
processors is nearest neighbor. (Accuracy restrictions on the time step At ensure
that the particle does not traverse an entire sub-domain in a time step.)

In the parallel code, two processor-dependent variables, x,,rt and xright, define the
range of possible coordinates for each processors’ particles,

where x;(t) is the position of the ith particle at time t. The uniform distribution of
particles in space at t = 0 is accomplished trivially in the parallel code by starting
the distribution in each processor at a different spatial location (approximately at
xleft). The velocities are assigned using a gaussian random number generator. It was
decided not to do this in parallel in order to more easily generate the same velocity
for each particle regardless of the number of processors actually used. (The user
specifies whether to use 1, 2, 4, 8, 16, or all 32 nodes of the Mark III Hypercube.)
Thus each processor generates the same sequence of random numbers, but only
keeps those numbers needed to assign velocities for its particles.

Each processor also stores the charge, py and electric field E arrays for only the
grid points in its primary decomposition sub-domain, xleft < xg < xrighf, and also for

GENERAL CONCURRENT PIG ALGORITHM 311

guard cells at either end of the sub-domain which are needed for the quadrupole
interpolations to and from the grid points. Excluding guard cells, in terms of a
global virtual grid index j, each processor stores and has access to grid points
defined by

(9)

where jleft = INT (xieft + 1.5) and jright = INT (.xright + 1.5). In addition, each pro-
cessor stores one guard cell to the left of jleft and two guard cells on the right, jright
and jright + 1 in order to do the interpolations and also parallel graphics. Within
each processor, the value stored in the first location in a processors’ array, e.g.,
E(l), corresponds to the location j = jleft - 1 in a virtual global array; this is the
processors’ left-hand guard cell.

Each processor also computes the requested particle diagnostics (e.g., density and
potential profiles, distribution function), for its assigned particles and grid points.
In the Mark III hypercube, a controlling computer (control processor) combines
and outputs the diagnostic information from the individual processors. For trajec-
tory diagnostics and debugging, an extra word per particle can be allotted to store
a particle’s identity (i.e., a number in the range 1 to npar,). When used, this informa-
tion is passed along with the particles’ position and velocity, when it moves from
one processor to another.

B. Secondary Decomposition and Parallel FFT

When using the GCPIC algorithm to decompose a PIC code on a parallel
computer, generally a secondary decomposition is necessary for the field solution
portion of the code. For this problem, a secondary decomposition is necessary
because the processor assignments in the above primary domain decomposition are
not appropriate for the hypercube FFT solution of Poisson’s equation. To solve
Poisson’s equation, the hypercube PIC program uses the hypercube FFT code
developed by Salmon and Williams, described in Ref. [9]. To use this code, the
physical domain must be divided into N, equal sub-domains and the sub-domains
must be assigned to processors in order of the processors number, and not mapped
directly onto the processor array as in the primary decomposition. This decomposi-
tion and processor assignment for the secondary decomposition are shown in
Fig. 3b for Np = 8. This secondary decomposition must also be used whenever the
diagnostic routines utilize FFTs. For this particular problem with uniform density,
both the primary and secondary sub-domains are of equal physical size; when a
problem with non-uniform density is run, the primary sub-domains will not be of
equal size (cf. Fig. l), but the secondary sub-domains must still be of equal size
because of the hypercube FFT code.

It can be seen that, in general, the decomposition needed for a concurrent FFT
is not an efficient decomposition for the particles in PIC codes on parallel pro-
cessors. Since the FFT requires uniform grid spacing and sub-domains of equaf
physical size, using this decomposition for dividing the particles among processors

312 LIEWER AND DECYK

would result in processor load imbalance whenever the plasma density was non-
uniform.

To take the forward (x + k) Fourier transform of a spatial grid array, first the
grid information is redistributed from the primary to the secondary decomposition
for the hypercube FFT. The inverse (k +x) hypercube FFT of a k-space variable
distributes the new grid information in the secondary decomposition. After the
inverse (k + x) hypercube FFT is used, the new spatial grid information must
also be redistributed among processors in the primary decomposition for storage
and future use. In the present hypercube implementation, both types of global
redistributions are accomplished by passing the processors information around the
ring formed by the l-dimensional configuration of processors (cf. Fig. 2~). Each
processors’ present spatial grid array is placed in a communication buffer. This is
passed to the processor on the left and a new buffer is received from the neighbor
on the right. N,, - 1 passes are made so all processors have access to all grid points.
At each pass, each processor determines whether to store some or all of the infor-
mation received in the incoming buffer before passing it on. The information needed
to make these decisions (e.g., what grid points are arriving at each pass,) is
calculated by each processor in a setup routine at the beginning of the code. Since
these redistributions are always needed before an FFT and after an inverse FFT,
they have been incorporated into a new Fourier transform subroutine for the
parallel code. This routine performs the necessary redistributions and calls the
hypercube FFT subroutines.

The inverse hypercube FFT in the k -+.x direction also utilizes and expects a
particular initial distribution of the Fourier modes among processors (bit-reversed
locations, cf. Ref. 9). The particle code uses various constant k-space arrays, e.g.,
the array of wave numbers k(j), for Poisson’s equation and for some of the
diagnostics. These are calculated in a subroutine at the beginning of the sequential
and parallel codes. In the parallel code, this subroutine now also distributes these
k-space arrays among the processors as expected by the inverse hypercube FFT
routine.

C. Parallel Particle Update

The sequential particle push subroutine has three major parts. Each part has a
loop over particles, i = 1, npar,. First the electric field at the particle’s position is
found by interpolation, and the new particle position and velocity calculated via
Eqs. (5)-(6). Second, the new coordinate is checked to see if it is out of the simula-
tion bounds, and if so, corrected, e.g., for periodic boundary conditions, particles
leaving one boundary are reintroduced at the opposite end. Third, the new charge
density is computed by interpolation from the new particle positions.

In implementing the parallel particle push, two changes in the sequential push
subroutine were made. The first was a trivial change in addressing a particle’s
nearest grid point, where a processor-dependent offset was now required. Each
processor stores only the electric field E and charge array pn for its primary sub-
domain (and guard cells), so an offset must be subtracted from the particle’s nearest

GENERAL CONCURRENT PIc ALGORITHM 313

grid point in the virtual global array in order to find the proper electric field values
and to deposit the charge in the proper place in the charge density array. The
nearest grid point now corresponds the position j in the local grid arrays where

j=INT (x,(t)+ 1.5)-j,,, (10)

and where jorr =jlef, - 2. [j,,,t is defined following Eq. (9).]
The second, non-trivial, change was to replace the section of the push routine

where the updated particle coordinates were checked with a much more elaborate
scheme where particles which were now out of the processors’ bounds are passed
to other processors. This was implemented as follows:

If a processor’s ith particle is out of bounds to the left, the particle’s coordinates
x(i) and u(i) are placed in a special buffer, buffl; the location (address) of the hole
created in the particle position and velocity arrays by its departure is added to a
list of holes, ihole. That is, if the ith particle is the first to leave the sub-domain,
ihole (1) = i. Each processor has its own ihole array. Similarly, if a particle went out
of bounds to the right, its co-ordinates are placed in buffr and its address/index
placed in the processor’s ihole array. When all particles have been checked, bujjfl is
passed to the processor on the left and buffr to the processor on the right. At the
same time, incoming particle buffers are received from the neighboring processors.
The incoming particles are used to fill in the holes in the old particle arrays created
by the departing particles. If there are more incoming particles than holes, and, thus
this processor’s number of particles npp is increasing, then the extra overflow par-
ticles are added to the bottom of the particle arrays. If there are fewer incoming
particles than holes in the old particle arrays, and, thus, the number of particles in
the processor npp is decreasing, then the remaining holes are filled, from the top
down, by particles moved up from the bottom of the old particle arrays. As the
filling of the extra holes progresses, any holes encountered at the current bottom of
the particle arrays are skipped. When the location (address) of the hole being tested
becomes greater than the current bottom particle address, the holes are all filled,
and the filling procedure is stopped. In this fashion, the particle coordinates x(i)
and u(i) are left in contiguous arrays with i= 1, npp. Alternatives would have
required the use of indexing within the particle loops and additional particle storage
space.

By accumulating the particle information for particles leaving a processor in the
two buffer arrays buffi and buf’j and making only two communication calls within
the push subroutine (one to the neighbor on the right and one to the neighbor on
the left), the communication time for exchanging particles is minimized because the
overhead in starting up the internode communication is kept to a minimum.

One further change was necessary for the particle push portion of the code which
is not part of the push subroutine itself. Because of the quadrupole interpolation of
the charge, a portion of a particle’s charge may be deposited in the spatial sub-
domain of a neighboring processor, that is, it may be deposited in its guard cells
(cf. Section IIIA). After the push, the charge accumulated in the guard cells is

314 LIEWER AND DECYK

passed to the appropriate neighbor and added to the proper elements in its py array
to form the complete charge density for its sub-domain. The communication is done
by two shifts of guard cell information, one to the neighbor on the left and one to
the neighbor on the right.

D. Parallel Poisson Solver

For the case of periodic boundary conditions, the sequential Poisson solver (1)
calculates p,(k) from py(xg) by calling an FFT; (2) obtains E(k) by multiplying
p,(k) by a factor - iS(k)/k, where S(k) is the particle shape function [1, 31; and (3)
calls an FFT to transform E(k) to E(x,).

In the parallel Poisson subroutine, the second portion was unchanged except for
the trivial change in the loop index (each processor has l/N, of the Fourier modes).
The first and third portions now call the new Fourier transform subroutine,
described in Section B, which performs the necessary redistributions of data
between the primary and secondary decompositions and calls the hypercube FFT
routines. Note that times for the field solution portion of the code given in Section
IV includes the time for the two redistributions of data between the primary and
secondary decomposition.

E. Parallel Graphics

Graphics in the parallel code were done using a Tektronix driver previously
written in Fortran for sequential computers [lo]. Graphs can be displayed in real
time directly at a terminal (Tektronix emulator or SUN) or they can be saved in
a graphics metafile for later viewing or printing on a variety of devices [lo].
Figure 4 shows a sample phase space plot generated by the parallel code from the
benchmark case discussed in Section IV.

It was necessary to make several small modifications to the sequential graphics
routines for the parallel code because the information for creating the plots, such
as phase space or electric field plots, is distributed among the processors.

In the parallel code, each processor creates the portion of the plot which
corresponds to the data it stores, e.g., its particles for a phase space plot or its
segment (grid points) of an electric field E(x) vs x plot. One processor (processor 0)
is also responsible for drawing the axes and labels. However, it is first necessary to
determine the global maximum and minimum values of the function to be plotted
and the result communicated to all processors so that all processors use the same
scale when creating their portion of the plot. This is handled by a global com-
munication routine. Another consideration was necessary for line plots such as E(x)
vs x. In order to make the curves continuous, each processor had to plot not only
its grid points as defined by Eq. (9), but also its first guard cell on the right, jright.
However, each processor already has access to this information because the
primary decomposition included this guard cell for use in the interpolations, so no
further changes were needed.

With the current Mark III configuration, it is necessary for each processor to
send its portion of the plot to the host or controlling computer which combines the

.12800E+03

.OOOOOE+OO

GENERAL CONCURRENT PIG ALGORITHM

-.80000E+01 .80000E+01

ELECTR0N PHRSE SPRCE. T= .oo

X VERSUS VX

12800Et03

OOOOOEcOO

-. 80000E+01 .80000E+01
ELECTRBN PHRSE SPRCE, T= 25.00
X VERSUS VX

L

315

FIG. 4. Electron phase space from the Mark III code for the benchmark case of an electron beam-
plasma instability: (a) initial phase space; (b) phase space near saturation of the instability.

316 LIEWERAND DECYK

diagnostic information and puts it in a file and/or displays it at a terminal. Because
each portion of the plot is created independently in the nodes, the order it which
the processors information is received is irrelevant.

F. Portability of GCPIC Parallel Code and Algorithm

The Mark III Hypercube parallel code, written in Fortran ‘77, runs under the
CRoS III operating system [9]. (The code has also been implemented on an
NCUBE hypercube parallel computer at Caltech which also runs under the
CRoS III operating system.) Although communication among the processors is fre-
quently used in the parallel code, in fact, only two system subroutines for internode
communication were invoked. Thus, only replacements for these would be needed
to port the code to another parallel computer. Additional systems subroutines were
used for communication between the nodes and the controlling computer. These
system subroutines, which are specific to the Mark III, are presently being phased
out.

The two internode communication Fortran routines called are kcombi which
combines data from all processors according to a user-supplied function, and kcsbft
(from shift) which passes data to, for example, the neighbor on the right while
receiving data from the neighbor on the left. The kcsbft routine is preferred since
it is rapid and involves only nearest neighbor communication. The kcombi routine
involves global communication among all processors. It is generally avoided except
when calculating certain constants that all processors contribute to and need to
know the results, e.g., finding the maximum and minimum of a variable for
diagnostics or graphs.

Equivalent system calls on other parallel computers either exist or can be easily
written using whatever parallel primitives are available. They can also be emulated
for a large problem on a sequential computer e.g., a problem which needs an out-
of-core solution, where a portion of the data to be processed must be stored in
external memory, e.g., on a solid state disk. In this case, data associated with the
separate sub-domains become separate blocks of externally stored data. Individual
sub-domain data blocks (including both particles and fields) would be brought off
disk and into memory one at a time for processing. The internode communication
calls would be emulated by routines using temporary data storage to pass informa-
tion from one data block to another.

IV. PERFORMANCE ANALYSIS OF MARK III PIC CODE

The performance of the parallel GCPIC Mark III hypercube code has been
measured in three ways: (1) Comparison of the times to run the same problem on
an increasing number of processors (Table I); (2) Comparison of the times to run
problems with an increasing number of particles so that the average number of
particles per processor is constant (Table II); and (3) Comparison of the time to
run the benchmark problem with times on other computers (Table III). The first two

GENERAL CONCURRENT PIG ALGORITHM 317

measure the performance of the parallel algorithm on one concurrent processor, the
Mark III Hypercube, whereas the third measures the Mark III performance relative
to other computers.

The Mark III Hypercube consists of 32 independent processors, each with its
own local memory (4 Mbytes of dynamic random access memory and 128 Kbytes
of static random access memory). There is no global or shared memory. Each pro-
cessor consists of two Motorola MC68020 CPU’s with a MC68882 coprocessor.
The computation speed is approximately 200 Kflops per node. The rate for
synchronous communication between nodes is 2 Mbytes/s per channel. For a brief
time in the fall of 1988, a 64 node Mark III was available and used for the runs in
Table II.

A, Fixed Problem Size

A hypercube can be run with different numbers of processors by varying the
hypercube dimension, d, where 2d= Np. Table I gives the time for the particle push
portion of the code on the Mark III for 1, 2, 4, 8, 16, and 32 processors when the
total number of particles was held fixed. The case run was the benchmark case [4],
which is an electron beam-plasma instability, with 11,264 particles and 128 grid
points. The initial density distribution was uniform, but becomes slightly non-
uniform as the run progresses and the beam-plasma instability enters the nonlinear
stage.

In the table, the time given is the particle push time, defined as the cpu time per
time step per particle to advance the particles (including the force interpolation), to
exchange particles among processors, and to deposit the charge on the grid. Since
the number of particles per processor fluctuates as the run progresses, the push
times given are the maximum over all processors averaged over 100 time steps of
the benchmark case. In this run on 32 processors, 352 f 20 particles per processor
was observed. The speed up factor in Table I is defined to be

SW,) =
time on 1 processor

time on N, processors’

TABLE I

Push Times on the Mark III for Fixed Total Number of Particles

Processors
Push time

(PS) Speed up
Efficiency

(%)

1 210
2 106 1.98 99
4 52 4.0 99
8 27 1.9 98

16 14 15.3 96
32 7 29.5 92

318 LIEWER AND DECYK

It can be seen that the speed up in going from 1 to 32 processors was 29.5. This
gives a parallel efficiency of E = S(N,)/N, = 90 % for a fixed total number of
particles.

For the benchmark case with 128 grid points, the efficiencies for the field portion
were very low: the speedup for the field portion in going from 1 to 32 processors
was 5.3, giving a parallel efficiency of 16%. The low efficiency is due to both (1)
the inherent inefficiency of the parallel fast Fourier transform for a 128 point trans-
form run on 32 processors (only four grid points or modes per processor) and (2)
the redistributions of the grid information between the primary and secondary
decompositions (considered part of the field solution). The total efficiency of the
benchmark problem in going from 1 to 32 nodes was 51%, reflecting the parallel
inefficiency of both the field solution and the diagnostics. On 32 nodes, the parallel
code spent 51% of the time in the push, 26 % in the field solution, and 23 % in the
diagnostic routines.

The efficiencies of the push portion of the code presented here for the GCPIC
decomposition are as high as the push efficiencies found in an earlier parallel
decomposition of this code [111. In the earlier decomposition, the particles were
divided evenly among the processors and each processor stored its own copy of the
entire grid arrays. No exchange of particles was necessary; instead, it was necessary
to globally sum the charge density arrays over all the processors [111. This decom-
position, with each processors storing its own copy of the entire grid array, was
also used by Lubeck and Faber [12] to implement a 2D PIC code on an IPSC
hypercube. In this paper [123, a performance model for PIC codes on hypercubes
was presented and the predictions compared with the results for the IPSC hyper-
cube PIC code; agreement between the model and the observed scaling of the com-
putation time with the number of processors used was excellent. A 2D PIC code
implemented with the MYrias parallel computing system, which utilizes an
extended parallel Fortran for simplifying parallel code development, has also essen-
tially used the earlier decomposition [13].

B. Increasing Problem Size/Fixed Grain Size

In another set of runs, the number of particles and grid points was increased
linearly with the number of hypercube processors used so that the number of grid
points and the average number of particles per processor was held fixed. The
benchmark case of 11,264 particles and 128 grid points was run on 1 processor,
and a problem 64 times bigger (720,896 particles and 8128 grid points) was run on
all 64 processors. For the runs, the initial density distribution was uniform. For a
sequential code, the push time increases linearly with the number of particles and
the field portion increases faster than linearly (roughly as ng In ng due to the FFT
scaling). Thus, for a perfectly efficient parallel code, as the number of particles
increases linearly with the number of processors, the push time would remain con-
stant; however, the total time would still increase due to the increase in the time for
the FFT. For our parallel code on 64 processors, the efficiency of the particle push
portion is nearly perfect: E = 97 %. The observed 51 % increase in the total times for

GENERAL CONCURRENT PIG ALGORITHM 319

TABLE II

Mark III Timings for Increasing Problem Size

Processors

1
2
4
8

16
32
64

Total time Total Push Push time
(100 steps) push time efficiency per particle

Particles Grid points (s) (s) (%) per timestep

11,264 128 329 212 241.5
22,528 256 344 213 100 121.2
45,056 512 359 213 loo 60.6
90,112 1024 406 215 100 30.5

180,224 2048 406 281 91 15.6
360,448 4096 421 281 91 1.8
120,896 8128 491 281 91 3.9

the problem on 64 nodes compared to the problem on one node (Table II) is
largely due to this increase in the time for the FFT.

Table II gives the problem size and the times for various numbers of processors
used. Both the total run time and the total push time are given for 100 time steps.
(The time to initialize the particles is not included.) Note that this is not the push
time per particle per time step. Also given is the efliciency of the push, defined as

Time for n parr particles on 1 processor
‘=TimeforN,xn part particles on N, processors’

It can be seen that the total push time increased by only 3 %, giving a parallel
efficiency of 97 % for fixed grain size. The total run time increased by 51%, most
of which is due to the ng In ng scaling of the FFT.

For these runs, the push time, the time per particle per time step, fell from 241 ~LS
for 11,264 particles on 1 processor, to 4 ps for 720,896 (= 64 x 11,264) particles on
64 processors.

For the problem used to obtain the efficiencies for both fixed problem and fixed
grain size case, the particle distribution remained fairly uniform in space during the
run. The processors’ loads did not become unbalanced and thus high efficiency was
obtained for the particle push even though dynamic load balancing was not
implemented. If the distribution had become less uniform, the efficiencies would
have degraded in the absence of dynamic load balancing. In the future, we plan to
investigate the efficiency of this algorithm when dynamic load balancing is utilized.
In particular, it will be necessary to determine what overhead is associated with
dynamic re-partitioning of the domain and at what level of processor load
imbalance it becomes worthwhile.

In Tables I and II, only the efficiencies of the push portion of the code have been
presented because this is the most important part of the code, taking roughly 90%
of the cpu time in a sequential computer. In addition, the GCPIC parallel decom-
position for the push portion (the primary decomposition) would be the same for

581/85/2-S

320 LIEWER AND DECYK

all types of PIC codes, whereas the secondary decomposition will depend on the
particular method of solution used to solve for the electromagnetic fields.

C. Comparisons with Other Computers

Table III contains the timing information for the benchmark case (spar, = 11,264,
ng = 128) for several of the computers on which the UCLA benchmark code has
been run. Times on additional computers can be found in Ref. [4]. Plots of electron
phase space at t = 0 and during the nonlinear stage of the beam-plasma instability
are shown in Fig. 4. The plots are from the Mark III code (parallel graphics was
discussed in Section 1II.E). Two times are given in Table III: the total time and the
push time per particle per time step, as defined above. It can be seen that running
the benchmark on 32 nodes of the Mark III took 431 s, or 5.6 times longer than
a Cray 2 using vectorization, and h th as long as on the VAX. The push time on
32 nodes (7.2 ps per particle per time step) is 3.4 times slower than a Cray 2 using
vectorization.

The Mark III used for the runs reported in this paper uses the Motorola
68882 chip as the floating point coprocessor. The new Mark III +fp will also have
a Weitek floating point processor to increase the speed. Preliminary runs on a

TABLE 111

Benchmark Timings for ID Electrostatic Code

Computer

Total time Push time
(2500 steps) (per particle per timestep)

(s) (PS) Push/total

CRAY XMP/48 (1 processor)
Vector version
Scalar version

CRAY Is, CFT 1.11
Vector version
Scalar version

IBM 3090 VF
Vector version
Scalar version

CRAY 2 (1 processor)
Vector version
Scalar version

MARK III Hypercube
32 nodes
1 node
Alliant FXj8
CDC 7600

CONVEX C-l
Scalar version
Vector version (camp. dir.)
VAX 11/750,F.P.A.

50 1.46 83.1%
127 4.07 90.3 %

71
174

95 2.88 85.1%
185 6.0 92.1 %

77 2.10 85.2 %
302 10.10 94.3 %

431 7.2 50.7 %
7071 210.4 82.2 %

564 12.56 62.7 %
671 21.26 89.2 %

1731 56.08 91.2%
704 19.491 78.4%

6394 200.91 88.5 %

2.88 82.5 %
5.42 87.5 %

GENERAL CONCURRENTPICALGORITHM 321

4-node Mark III +fp show that the speed up for the push time on one processor
is roughly a factor of 8. Assuming a 10% loss in efficiency in going from 32 to
128 nodes, we can estimate that the push time will fall to 0.25 ,us per particles per
time step, making it about 8 times faster than a one processor Cray 2.

V. CONCLUSIONS

We have developed an efficient algorithm, termed the GCPIC algorithm, for
dividing PIC simulations among the processors of a parallel computer. The
efficiency of GCPIC has been demonstrated by implementing a 1D electrostatic
code using this algorithm on the JPL Mark III Hypercube. Although the GCPIC
algorithm was developed on a hypercube, it will be an efficient algorithm for load
balancing particle codes on any parallel computer with distributed memory. In
addition, it would be an efficient algorithm for large PIC codes on sequential com-
puters where part of the data must reside in external memory, e.g., on solid state
disks, where now the individual sub-domains would be brought off disk and into
memory one at a time.

The central feature of the GCPIC algorithm is the use of two decompositions for
the two portions of a PIC code: a primary decomposition used to make the particle
push portion of the code efficient and a secondary decomposition used to make the
electromagnetic field solution efficient. Inherent in the GCPIC algorithm is the need
to redistribute the field arrays between the two decompositions at every iteration.

The code implemented on the Mark III uses a fast Fourier transform to solve
for the field. If a finite difference field solution were used, a secondary decomposi-
tion with equal numbers of grid points per sub-domain would be most efficient,
regardless of whether the grid spacing was uniform or non-uniform. For this
secondary decomposition, nearest neighbor sub-domains would be assigned to
nearest neighbor processors, e.g., the physical domain would be mapped directly
onto the processor array. Only nearest neighbor communication would then be
necessary within the field solution portion as well, as opposed to the global
communication necessary for a Fourier transform solution. Note that if the field
solution uses a finite difference algorithm and if a non-uniform grid is created such
that each cell has an equal number of particles, then the primary (particle) and
secondary (field) parallel decomposition become identical and no global redistribu-
tions of grid arrays are necessary.

ACKNOWLEDGMENTS

The authors thank Professors Geofrey C. Fox (Caltech), John M. Dawson (UCLA), and R. W. Gould
(Caltech) for their support. The help and support of the JPL hypercube group is also gratefully acknowl-
edged, with special thanks to R. Calalo, J. Patterson, and B. Zimmerman. Part of the research described
in this paper was performed by the Jet Propulsion Laboratory, California Institute of Technology, and

322 LIEWER AND DECYK

was sponsored by the U.S. Department of Energy under Contracts DE-FG03-85ER25009 and
DE-FG03-85ER53173 and by Sandia National Laboratory under Contract 32-5531 through an agree-
ment with the National Aeronautics and Space Administration. The research of one of the authors
(VKD) was supported by Sandia National Laboratory under Contract 23-1540.

REFERENCES

1. J. M. DAWSON, Rev. Mod. Phys. 55, 403 (1983).
2. C. K. BIRDSALL AND A. B. LANGDON, Plasma Physics via Computer Simulation (McGraw-Hill,

New York, 1985).
3. V. K. DECYK, UCLA Center for Plasma Physics and Fusion Engineering Report PPG 708, 1983

(unpublished).
4. V. K. DECYK, Supercomputer 27, 33 (1988).
5. A. B. LANGDON, B. I. COHEN, AND A. FRIEDMAN, J. Compuf. Phys. 51, 107 (1983); J. U. BRACKBILL

AND D. W. FORSLUND, J. Comput. Phys. 46, 271 (1982).
6. R. W. HOCKNEY AND J. W. EASTWOOD, Computer Simulation Using Particles (McGraw-Hill,

New York, 1981).
7. 0. BUNEMAN, C. W. BARNES, J. C. GREEN, AND D. E. NIELSON, J. Comput. Phys. 38, 1 (1980).
8. V. K. DECYK AND J. M. DAWSON, .I. Compuf. Phys. 30, 407 (1979).
9. G. C. Fox, M. JOHNSON, G. LYZENGA, S. OTTO, AND J. SALMON, Solving Problems on Concurrem

Processors (Prentice-Hall, Englewood Cliffs, NJ, 1988).
10. V. K. DECYK AND L. Xu, in Proceedings Twelfth Conf on Numerical Simulation of Plasma,

San Francisco, CA, 1987, Paper PW 10.
11. P. C. LIEWER, V. K. DECYK, J. M. DAWSON, AND G. C. Fox, Math. Comput. Modelling (Proceedings

Sixth International Conference on Mathematical Modelling) 11, 53 (1988).
12. 0. M. LUBECK AND V. FABER, Parallel Computing (to be published).
13. R. FOSTER, C. THOMSON, AND D. WILSON, “Parallel Programming without Tears,” 3rd SIAM

Conference on Parallel Processing for Scientilic Computing, Los Angeles, CA, December 1987.

